CS8803-Fall24 Course Project
Learning to Navigate: An Imitation Learning Framework
for Path Planning in Adversarial Environments

Connor Bossard, Sophia Imhof, Sidney Wright, Elias Izmirlian
Georgia Institute of Technology
cbossard3@gatech.edu, simhof30@gatech.edu,
eizmirlian3@gatech.edu, swright920gatech.edu

June 21, 2025

Abstract: This project seeks to explore training reinforcement learning agents to nav-
igate complex and dynamic maze environments. Our approach pre-trains an RL agent
through imitation learning methods using A* generated “expert” trajectories on a static
maze environment. The pretrained agent is then fine-tuned in a dynamic environment
with moving adversarial agents. Our method improves sample efficiency and enhances
performance across various maze sizes.

Keywords: Deep Reinforcement Learning, CS8803, Course Project

1 Project Links

Link to Presentation: https://mediaspace.gatech.edu/media/DRL+Project+Presentation/
1_98wwbybv

Link to Github Implementation: https://github.gatech.edu/simhof3/DRL-Project

2 Introduction

Solving complex navigation tasks with moving obstacles is a challenge for reinforcement learning
(RL) agents. This problem is important for use cases such as autonomous driving or flying, where
dynamic obstacles create unpredictability that an RL agent must be able to adapt in real time. Ex-
pert path planning algorithms such as RRT (continuous) and A* (discrete) can solve static mazes
efficiently [3], but would struggle in a dynamic environment with moving obstacles. Our goal is to
develop an RL agent that successfully navigates complex maze environments with dynamic obsta-
cles.

Our project will focus on a discrete action space so we will utilize A*. A* is a search algorithm
that finds the shortest path from a starting position to end position by considering the estimated cost
to move to a given cell in the maze and cost to the goal using a heuristic function. A* is effective
in planning long-term routes in static environments. However, it does not respond well to dynamic
planning problems in which obstacles need to be avoided (requires frequent re-planning)[2]. On the
other hand, RL has been shown to be learn to avoid these dynamic obstacles without re-planning
[1]. Training an RL agent on long-term path-planning scenarios is computationally expensive. As
the observation space grows, training significantly increases in complexity.

https://mediaspace.gatech.edu/media/DRL+Project+Presentation/1_98ww5ybv
https://mediaspace.gatech.edu/media/DRL+Project+Presentation/1_98ww5ybv
https://github.gatech.edu/simhof3/DRL-Project

Therefore, for a path-planning problem in an environment with dynamic obstacles or adversarial
agents, we hypothesize that thoughtful pretraining could improve performance. Pretraining will be
done using A* generated trajectories as an expert agent during imitation learning. Our intuition is
this will decrease training time for our RL agent in the dynamic environment and increase over-
all performance. This approach balances the efficiency and performance of path-planning search
algorithms with the adaptability of reinforcement learning.

3 Related Work

Dynamic obstacle avoidance is a well studied application of reinforcement learning, partially due
to the more difficult nature of path planning in an environment that is not solely contingent on the
agent actions and transition dynamics. For example, [4] demonstrates multiple agent decentral-
ized collision avoidance, where agents avoid each other through dynamic path planning rather than
communicating with each other. This differs from our setting, where we have a single “good” agent
which is learning dynamic path planning, and one or more “bad” agents that act as moving obstacles.

Previous research demonstrates a number of viable solution methodologies to this kind of environ-
ment, such as careful design of a reward function and experience replay using sample weighting as
exemplified in [1]. This approach is designed for an environment with a continuous state and action
space with a high degree of freedom, which causes a dynamic obstacle to create additional compli-
cations, such as more difficult collision detection. Their comprehensive reward function and sample
weighting requires a lot of domain knowledge be encoded in the design of their agent, whereas
our approach attempts to encode this domain knowledge through expert trajectories for a simpler
problem, and then learn a more difficult path planning policy using this initialization.

In this way, our approach is somewhat similar to curriculum learning for dynamic obstacle avoid-
ance, as seen in [5]. In (Wang et. al) the authors use curriculum learning - a methodology which
involves learning sub-tasks and combining policies for these sub-tasks to learn a more complicated
task. The authors found success for environments with moving obstacles when a task hierarchy (or
“curriculum”) is designed to transfer specific functions such as distance and pace functions that are
appropriate to the difficulty of the environment. The authors also found that training from scratch
was ineffective for more difficult environments with moving obstacles. While our approach does not
involve an ordered task hierarchy, we do adopt a similar approach of transferring certain portions of
policy into our agent before continuing to learn.

4 Methods

4.1 Environment

We are using a custom 2D grid maze gym environment throughout our experiments. The maze is
initialized as a matrix with each cell value representing the state of the maze in that position. A
given cell can be occupied by a free space, a wall, our RL agent, a bad agent, or a goal location.
There is only one RL agent and goal location in each maze. The maze is randomly initialized in a
way that ensures there is a passage from the starting location to the goal location.

4.1.1 Static Maze

For the static environment, we place a single bad agent in the maze during maze initialization and
do not alter its position.

4.1.2 Dynamic Maze

For the dynamic environment, we assume the bad agent moves to a random valid state, however it
could easily be adapted to different bad agent algorithms like pure pursuit. We chose this bad agents
algorithm because it shows the RL agent’s ability to learn to avoid the bad agent without increasing
the difficulty of the environment to much due to the resources and time we had this semester.

Free Location
Wall

Agent

Bad Agent
Goal Location

Free Location
Wall

Agent J
Bad Agent
Goal Location

Figure 1: Static maze environment(left) and Dynamic maze environment with moving adversarial
agents (right).

4.2 Algorithms
4.2.1 Generating Expert Trajectories

To generate a buffer of expert trajectories for our imitation algorithms, we used A* to generate a
path for a series of randomly initialized mazes. Then, we followed the path through the maze and
stored the corresponding state/action pairs in the buffer.

4.2.2 Behavior Cloning

We used a traditional Behavior Cloning algorithm, where the expert trajectories were generated as
mentioned above. We pretrained the PPOs policy network by keeping the value network as is. The
policy was updated using batch gradient descent on the loss between the policies log likelihood
actions compared to the expert trajectories action.

4.2.3 DAGGER

As an alternative and more sophisticated imitation learning algorithm to vanilla Behavior Cloning
we also implemented: DAGGER. The initial policy passed into the DAGGER algorithm was the
pretrained Behavior Cloning policy. Using DAGGER helped us reach out-of-distribution states that
simply creating a policy based off A* did not reach. DAGGER is able to reach these unfamiliar
states by sampling from the current policy for the next action, and stepping with that action in the
environment. However, it runs A* on the current state to add the expert action to the replay buffer.
This sampling of the next state leads to more variance in the states reached leading to a more robust
pretrained policy. The pseudo-code for DAGGER is shown below in Figure 2.

424 PPO

After pre-training the policy network with Behavior Cloning or DAGGER, we continued training
on PPO, because of its stability and ease of implementation. PPO is a policy gradient method,

Initialize D « 0.

Initialize 7; to any policy in II.

fori =1to N do
Let = ﬂiﬂ'* + (1 — ,Bl)fl'l
Sample T'-step trajectories using 7;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D < D|JD;.
Train classifier 7;4+1 on D.

end for

Return best 7; on validation.

Figure 2: DAGGER psuedocode.

with a clipped surrogate objective to limit the change to the network in a single step. Unlike BC
or DAGGER, which rely on supervised learning with expert demonstrations, PPO is an on-policy
RL agent that learns directly from interactions with the environment. The pseudo-code for PPO is
shown below in Figure 3.

Algorithm 1 PPO-Clip

1: Input: initial policy parameters 6, initial value function parameters ¢q

2. for k=0,1, .do

. Collect set of trajectories Dy = {7} by running policy 7 = m(6)) in the environment.
Compute r¢) I;‘,.
Compute advantage estimates, A (using any method of advantage estimation) based
on the current value function Vj, .
6: Update the policy by maximizing the PPO-Clip objective:

B

T q.
Ors1 = arg max ﬁ Z Zmin (MAW“(SI- ar), gle, A (s, m,))) s

€Dy 1=0 7o, (ae]s:)

typically via stochastic gradient ascent with Adam.
Fit value function by regression on mean-squared error:

T P
b1 = ;ugmmin \Dﬁ Z Z (V,I,(.s,) - f(’,)z A

TE€Dy, t=0

5

typically via some gradient descent algorithm.
8: end for

Figure 3: PPO psuedocode.

S Experimental Results

First, we were able to show that training the agent with BC and DAGGER outperformed a PPO
agent in terms of sample efficiency and accuracy on a static environment. This shows the benefit of
pretraining with an imitation learning algorithm rather than using a curriculum learning framework.
For a 7x7 maze, the accuracy of a random agent was 15 percent, the accuracy of the PPO agent with
5 million steps was 72 percent, while the accuracy of the BC and DAGGER agents were both 99+
percent. These trends continued for larger mazes. For a 11x11 maze, the accuracy of a random agent
was 2 percent, the accuracy of the PPO agent with 5 million steps was 4 percent, while the accuracy
of the BC and DAGGER agents were 19 and 39 percent respectively.

Next, we used the BC and DAGGER policies from the static environment as the starting policy
for the dynamic mazes. We were able to show that despite the environment changing significantly,
pretraining on the simpler, static environment yielded improved average rewards and accuracy. For
the small dynamic maze, the accuracy with PPO was 34%, which increased to 43% and 64% for
Behavior Cloning and DAGGER respectively. In Figure 5, we can see that the PPO agents pretrained
with BC converged faster to a higher reward on both the small and medium maze, despite that pre-
training was done on a different environment.

Surprisingly, we found that DAGGER did not yield significantly improved results when transferred

Table 1: Performance Metrics for Static and Dynamic Mazes (Small Maze)

Agent/Method Accuracy (%)
Random Static Maze 15

PPO Static Maze (no pretraining) 72

PPO Static Maze with Pretrained BC 99+

PPO Static Maze with Dagger 99+

PPO Dynamic Maze (no pretraining) 34
PPO Dynamic Maze with Pretrained BC 43
PPO Dynamic Maze with Dagger 64

Table 2: Performance Metrics for Static and Dynamic Mazes (Medium Maze)

Agent/Method Accuracy (%)
Random Static Maze 2

PPO Static Maze (no pretraining) 4

PPO Static Maze with Pretrained BC 19

PPO Static Maze with Dagger 39

PPO Dynamic Maze (no pretraining) 14

PPO Dynamic Maze with Pretrained BC 27

PPO Dynamic Maze with Dagger 26

to the dynamic mazes over Behavior Cloning despite having higher average reward and accuracy
on the static maze during pretraining. We hypothesize that there is only so much “knowledge” that
can be transferred over from the static environment to the medium-sized dynamic environment. For
example, both these agents learned to avoid walls and move in the direction of the goal, however
the degree to which they learned these may not be significant when they continued to learn in an RL
framework on a different environment.

6 Discussion and Analysis

Our approach proved to be successful over our baseline performance for the dynamic mazes, sup-
porting the intuition that pretraining with imitation learning using A* gives a performance boost to
reinforcement learning algorithms such as PPO. We saw this performance boost in both the static
and dynamic mazes. While we were more interested in observing the effect of a pretrained policy
on PPO performance in the dynamic maze, the boost in accuracy seen in the pretrained PPO for the
static maze (both medium and small) is also interesting. This could indicate that the clipped updates
made by PPO work better when the policy has been initialized to have some foundation suited to the
environment.

The imitation learning algorithm employed for policy initialization seems to have minimal impact on
the agent performance in the dynamic maze which is somewhat surprising, as DAGGER is consid-
ered to be a more advanced imitation learning algorithm than Behavior Cloning. Potential reasons
for this could include that the policy initialization on the static maze can only be so helpful. The
nature of imitation learning algorithms learning from A* causes our pretrained policy to be better
posed for general maze solving, but the moving obstacle adds a layer of complexity that has substan-
tial effects on the optimal policy. Thus, having a better policy for a static maze does not necessarily
translate to a better policy on the dynamic maze. Our results do support, however, that some policy
initialization is beneficial.

Another interesting observation is the average reward over time on the medium maze seen in Figure
5 - we see that the PPO algorithm without pretraining outperforms the pretrained agent for the first
million rollouts. Afterwards the average reward of the pretrained agent continues to increase while

Average Reward Over Time

. with BC
o 52 pretraining (grey)
kel
°
©
H
@ 03
()
o
] without BC
2 o pretraining (blue)
o
()
jo}
© 05
o
[
>
©
0.6
0 s00k ™ 15M ™ 25m M 3sm a 45M 5001216
rollouts
Average Reward Over Time
w 05 with BC
% (preltlrain)ing
yellow;
2 r
> 0.6
o
8
07
2 without BC
'GEJ_ pretraining (pink)
) 0.8
(o))
©
o
> 0.9
©
0 - 500k ™ 1.5M ™M 2.5M 3m 3.5M aMm 4.5M 5001216 x
rollouts

Figure 4: Comparison of average reward over time of PPO agent when pretraining with BC versus
no pretraining on a small (top) and medium (bottom) maze.

Average Reward Over Time w/ DAGGER pretraining

#rdliouts *

Average Reward Over Time w/ DAGGER pretraining (11x11)

#rollouts M am 01216

Figure 5: Comparison of average reward over time of PPO agent when pretraining with DAGGER
versus no pretraining on a small (top) and medium (bottom) maze.

the non-pretrained agent seems to plateau. With a pretrained policy transferred from a different
environment, you might expect initial performance boosts that decrease a little over time, but here
we see the opposite. This could be because the initialized policy does not provide immediate benefit,
as the difference in environment might lead to the policy biasing unhelpful actions at times. Thus,

PPO must correct certain parts of the pretrained policy which are detrimental before seeing long
term benefits of the pretrained policy.

The performance of all agents in the medium mazes is significantly lower than in the small maze.
Ideally, we would see not just a performance boost, but good performance from our pretrained PPO
policy. We faced some challenges with the medium maze, as the larger state space made it more
difficult for our baseline algorithms to learn. Since we had to perform tuning on the pretraining
algorithm as well as PPO, the performance was also highly variable. A possible future direction
would be to experiment with different policy network structures, such as a Convolutional Neural
Net, as opposed to the MLP policy we employed. A CNN might be better suited to this task, and
could even see larger benefits from being pretrained. It also might be helpful for the issue we faced
with the medium maze of the state space being too large.

7 Conclusion

Our findings support the idea that a pretrained policy for a related, simpler task is beneficial to
learning a more complicated task even if a subtask hierarchy is not created as it is in curriculum
learning. We also demonstrate that transfer learning using imitation learning from an algorithm
better suited to a simple task can have benefits for learning on a more complex task. While our
algorithms were not able to achieve very high accuracy on the medium maze, we were able to
demonstrate performance boosts gained from pretraining.

These findings are useful for applications involving dynamic obstacle avoidance, especially ones
with limited access to the true” or more complex environment, as a simpler simulated environment
can be used for pretraining. Our results indicate that this is especially true for smaller state spaces,
but further research could demonstrate equal or greater benefits in larger state spaces.

Acknowledgments

Thank you to our TA’s and Professor Garg for a great semester!

References

(1]

(3]

P. Chen, J. Pei, W. Lu, and M. Li. A deep reinforcement learning based method for real-
time path planning and dynamic obstacle avoidance. Neurocomputing, 497:64-75, 2022.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2022.05.006. URL https://www.
sciencedirect.com/science/article/pii/S0925231222005367.

D. Connell and H. M. La. Dynamic path planning and replanning for mobile robots using rrt.
In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 1429—
1434, 2017. doi: 10.1109/SMC.2017.8122814.

Y. He, P. Wang, and J. Zhang. A comparison between a* rrt in maze solving problem. In 2027
3rd International Symposium on Robotics Intelligent Manufacturing Technology (ISRIMT),
pages 333-338, 2021. doi: 10.1109/ISRIMT53730.2021.9596830.

C. Jaewan, L. Geonhee, and L. Chibum. Reinforcement learning-based dynamic obstacle
avoidance and integration of path planning. Intel Serv Robotics, 8(5):663-677, 2021. doi:
https://doi.org/10.1007/s11370-021-00387-2.

H.-C. Wang, S.-C. Huang, P.-J. Huang, K.-L. Wang, Y.-C. Teng, Y.-T. Ko, D. Jeon, and I.-C.
Wu. Curriculum reinforcement learning from avoiding collisions to navigating among movable
obstacles in diverse environments. IEEE Robotics and Automation Letters, 8(5):2740-2747,
2023. doi: 10.1109/LRA.2023.3251193.

https://www.sciencedirect.com/science/article/pii/S0925231222005367
https://www.sciencedirect.com/science/article/pii/S0925231222005367

	Project Links
	Introduction
	Related Work
	Methods
	Environment
	Static Maze
	Dynamic Maze

	Algorithms
	Generating Expert Trajectories
	Behavior Cloning
	DAGGER
	PPO

	Experimental Results
	Discussion and Analysis
	Conclusion

