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I. INTRODUCTION

We looked at different methods of adaptive control (Model
Reference Adaptive Control (MRAC), Neural Network based
Adaptive Control, Sliding Mode Control) for nonlinear flight
systems - specifically an F-16 - and how it is able to respond
to a catastrophic failure (loss of effectiveness of the elevator).

Aircraft dynamics are highly non-linear [1]. For example,
Figure 1 shows the forces that act on an aircraft.

Fig. 1. Forces acting on an aircraft

We used the F-16 model cited below [2], with the initial
conditions as follows:

TABLE I
INITIAL CONDITIONS (IC) STATE VARIABLES

h 10,000 ft
θ 0 degrees
v 310 ft/sec
α 0 degrees
q 0 deg/sec
δt 0
δe 0

We also used the following state for the equilibrium and
trim state:

TABLE II
TRIM / EQUILIBRIUM STATE VARIABLES

h 10,000 ft
θ 0 degrees
v 300 ft/sec
α 0 degrees
q 0 deg/sec
δt 0
δe 0

A. Related Work

Adaptive controllers in aircraft are not a new phenomenon,
with an early example being an experimental controller on
NASA’s X-15 in 1967 [3]. Generally, the advantage of these
types of controllers is that they are able to adapt to uncertainty
in the model, at the expense of extra computation power. There
are a wide range of adaptive controllers, ranging in complexity
from simply choosing gain and switching between them, to
fuzzy logic based neural networks (NN) [4]. Since 1967,
advancements have been made in the stability of adaptive
control systems, as well as in the development and stability
analysis of NN based adaptive control systems [5] [6]. Due to
the wide breadth of available controllers, and the developments
of stability in many of these systems, recent literature has
looked into using these control systems for unexpected damage
to aircraft [7], with this paper also providing one of the
possible failure modes.

Fig. 2. Airplane vertical tail failure [7]

An interesting topic also evolves from this discussion of
adaptive controls, namely whether to use model-free or model-
based adaptive controls [8]. Both methods will be explored,
however the focus will mainly be on the model-based architec-
tures, mainly due to the case of interest being an aircraft which
have relatively known nominal models. While recent literature
has explored learning the dynamics online with predictive cost
methods, the learning of the damaged aircraft dynamics will
not be a main focus of this project [9]. Another interesting
extension of adaptive control is robustness to malicious attacks
on the controller themselves, with this presenting a possible



Fig. 3. PID Performance Without Disturbance

catastrophic failure [10]. This method of failure may be
considered in a very basic sense, such as unknown input
changes, but will not be a main consideration for much of
the work.

The authors would like to compare modern adaptive control
methods over multiple levels of severity of changed dynam-
ics, represented by these failure modes and investigate the
strengths and weaknesses of each control method.

B. Controllers

1) PID: First, we looked at PID and LQR controllers as
non-adaptive control algorithms as a baseline. We were able
to tune the gains on the PID controller to get a good response
to the non-linear dynamics without the loss of effectiveness.
The LQR response on the linearized system was added to
the figures for the different controller responses to act as a
baseline and ideal response across, allowing easy comparison
across controllers.

However, when we added the loss of effectiveness of
the elevator at time t = 25 seconds (δe = δe/2), the
controller was not able to respond to the loss of effectiveness
and led to large oscillations and offsets, as shown in Figure 4.

2) LQR: Next, we calculated the LQR gains from the
linearized model around the trim condition using the equations
below:

J(u) =

∫ ∞

0

(xTQx+ uTRu) dt (1)

such that ẋ = Ax+Bu (2)

ATP + PA− PBR−1BTP +Q = 0 (3)

K = R−1(BTP +NT ) (4)

When applying the control input u=Kx on the non-linear
system, we see an offset in both the theta and velocity.
Which is expected being that the gains were determined for a
simplified dynamics model.

Fig. 4. PID Performance With loss of elevator effectiveness

Fig. 5. LQR Performance Without Disturbance

We also saw offsets in both theta and velocity, however they
were even larger after the loss of effectiveness of the elevator.

Fig. 6. LQR Performance With loss of elevator effectiveness



3) LQR-I: To handle the offsets above, we implemented
LQR-I, adding an integral term to try and mitigate these
offsets. It was implemented using the following equations:

Fig. 7. LQR-I Equations

This helped with the offset in the pitch angle, but was still
prevelant in the velocity state. ADD PERFORMANCE OF
LQR-I IF WANTED / SPACE

4) MRAC: As the first adaptive control method, we im-
plemented MRAC (Model Reference Adaptive Control). The
block diagram of the algorithm is included below.

Fig. 8. MRAC Block Diagram [11]

For our implementation, we used the linearized model
around the trim state as the reference model, and the control
inputs for the LQR linearized states as the reference. The plant
was the Non-linear model with loss of elevator effectiveness at
25 seconds. The goal of MRAC is to find a mapping of X and
r (the LQR control input) from the reference model to a U that
has a similar response for the non-linear, loss of effectiveness
dynamics model. This is done by learning weights for the

gains of specific states, control inputs and basis functions using
the equations below, where Γ is the learning rate for each
gain. This implementation was adapted from the Robust and
Adaptive Control with Aerospace Applications textbook [12].

u = KT
x x+KT

r r −ΘTΦ(x) (5)

K̇x = −Γxxe
TPB (6)

K̇r = −Γrr(t)e
TPB (7)

Θ̇ = ΓΘΦ(x)e
TPB (8)

Below is the response of the MRAC controller on the non-
linear dynamics with the elevator loss of effectiveness.

Fig. 9. MRAC Performance With loss of elevator effectiveness

We see that MRAC has a much better response to the dis-
turbance than the non-adaptive methods implemented above.
Specifically, we can see that the velocity state is not settling
to an offset and rather driving towards the equilibrium state.

5) NN Based Adaptive Control: The next adaptive control
algorithm we implemented was a Neural Network based
adaptive control method. This is very similar to the MRAC
implementation, but instead of learning weights for predefined
basis functions, it is learning the weights of a shallow neural
network. The architecture we used is shown below.

for this diagram, we are learning the weights V̂ and Ŵ .
The output V is then being multiplied by the state to get
the control input. Due to the instability of the F-16 and
sensitivity to perturbations to the control sequence, we adapted
the algorithm to have the output from the network to be small
and added these to the control inputs using the linearized LQR-
I gains. These updated equations are shown in Figure 11.



Fig. 10. Shallow NN Diagram [13]

Fig. 11. NN Adaptive Control Equations [13]

The response of the NN Adaptive control on the non-linear
dynamics without a disturbance shows that the performance
exceeds that of LQR, and LQR-I without the adaptive portion
from the Neural Network.

Fig. 12. NN Adaptive Control Response Without Disturbance

Furthermore, we see that the NN controller has improved
performance compared to the LQR and LQR-I controllers,
when there is a loss of effectiveness of the elevator. In
particular, it is able to return to the equilibrium state quicker.

Fig. 13. NN Adaptive Control Response with loss of elevator effectiveness

6) Sliding Mode Control: Sliding Mode Control (SMC) is
a nonlinear controller that drives the system to a pre-defined
sliding surface, and then along that surface, to the equilibrium.
This can be seen in Figure 14, which shows the phase portrait
of the sliding mode controller. The flow of the states will be
towards the pink line, and then along the pink line towards the
equilibrium. This is similar to how one may expect a bang-
bang controller to respond, and staying with that parallel, the
sliding mode controller often suffers from the same chatter
seen in bang-bang. Ultimately, sliding mode control is used
due to its simplicity, with the two overarching governing
equations shown below. SMC has been shown previously to
be robust for highly unstable aircraft [15].

ṡ = −k|s|a ∗ sgn(s) = h(s(x)) (9)

u = (CT g(x))†(−CT f(x) + h(s(x))) (10)

This controller method is guaranteed to be robust, and the
reaching law shown above is only one of many possible.
”C”, ”k”, and ”a” are tunable parameters used to control the
response of the controller, however for ”C”, the LQR gain
matrix ”K” was used for simplicity. This controller guarantees
that the controller will converge to the sliding mode, and as



such relies on the sliding mode being stable.

Fig. 14. Sliding Mode Control Overview [14]

C. Performance Comparison

To accurately compare the performance of the systems, as
well as to try to drive the system to stay within the simulation
bounds, all of the adaptive components are applied on top of
LQR or LQR-I. The ”Linear Dynamics w/ LQR” represents
the best possible response (with respect to our LQR weighting
matrices), a forward simulation of the LQR controller on the
linear dynamics with no loss of effectiveness. This helps give
a good baseline of what perturbations from 0 error are to be
expect at the beginning of the run.

The figure 15 shows the comparison of the adaptive ele-
ments when using a baseline LQR controller.

Fig. 15. Adaptive Controller Comparison with 50% Loss of Elevator
Effectiveness and LQR Base Controller.

As expected, most of the controllers have a constant steady
state error, which is highly undesirable. This error also grows
when the 50% loss of effectiveness occurs for all but the NN
and MRAC based controller, which slowly adapt the steady
state velocity. To combat this, adding integral terms to the
LQR and SMC controllers allows for minimization of steady
state error.

Fig. 16. Adaptive Controller Comparison with 50% Loss of Elevator
Effectiveness and LQR-I Base Controller.

As seen in the above figure, the steady state errors of both
LQR and SMC are virtually eliminated. It can also be seen
that while the NN controller seems to converge the quickest,
the sliding mode with integral seems to be the most resistant
to the instantaneous loss of effectiveness. MRAC still has an
offset in all but the velocity because it has no integral term to
drive the smaller errors to 0.

Fig. 17. Elevator Adaptive Controller Responses with 50% Loss of Elevator
Effectiveness. The dashed lines represent the commanded deflection.

Looking at the controller response, it is clear that each
of the adaptive elements are able to adapt to the loss of
effectiveness, and change their commanded deflections to
negate the effectiveness loss. All of the controllers are able
to get the true deflection close to their pre-fault steady state
values. The SMC-I seems to respond the quickest, which
matches the earlier assertion that it is the most resilient to the
loss of effectiveness.

Looking into a larger loss of effectiveness, the same test is
ran with a 90% loss of effectiveness, a loss effectiveness that
could often be catastrophic if not accounted for.



Fig. 18. Adaptive Controller Comparison with 90% Loss of Elevator
Effectiveness and LQR-I Base Controller.

As seen in figure 18, the large loss of effectiveness
causes oscillations in all of the controllers except LQR-I a
+ SMC-I. This may be due to the learning rates of MRAC
and NN based controllers causing the weights to overshoot
the baseline, leading to oscillations, as well as the integral
anti-windup term preventing stabilization of the LQR-I
controller. The anti-windup is required to keep errors from
growing unreasonably and causing commands that drive the
F-16 into unstable or unrecoverable regimes.

Fig. 19. Elevator Adaptive Controller Responses with 90% Loss of Elevator
Effectiveness. The dashed lines represent the commanded deflection.

Interestingly, it seems that all of the controllers tend to
respond in a second order fashion, however, the damping is
directly related to the loss of effectiveness seen. Again, as in
the 90% case, all of the controllers respond by immediately
commanding larger deflections than the true response, but the
SMC-I seems to have the best damping in both cases. This
is likely due to the exponential reaching law used, which
was chosen to reduce chatter and smoothly drive towards the
sliding manifold. The other controllers can also be shown
to be damped, with each subsequent peak being smaller
than the last, but they do not stabilize as fast. This may be
undesirable, as jets such as the F-16 are designed to be able
to be highly maneuverable, so these oscillations may prevent
that. Thus, while all of the controllers begin to damped out,
it may be desirable for a fighter to take the controller that

adapts the fastest.

Finally, it important to note that while all of the controllers
do adapt to disturbance, it seems that the NN controller
actually dampens the slowest of the bunch. This is likely due
to the extremely small learning rates that had to be applied to
prevent the controller from going unstable while learning. This
was a simulation restriction, as there was limited aerodynamic
data. However, when comparing the MRAC to the NN, the big
difference is that the NN does not require tailored nonlinear
terms. For an aircraft the governing nonlinear dynamics are
relatively well known, with most of the uncertainty coming
from external forces (such as wind) or unmodeled aerody-
namics (such as turbulence). Thus the generalized nature of
the NN adaptive control may not be as desirable, if this can
be traded for more robust guarantees.

D. Challenges

One major challenges we faced was the fact that the F-16 is
inherently unstable, leading to the divergence of dynamics for
small changes to the controls. This made tuning the controllers
(particularly the learning rates of the MRAC and NN based
controllers) very difficult, as small changes would lead to
instability. Another challenge we faced is that the aero table
used were bounded, leading us to getting out of interpolation
ranges for angle of attack values causing the simulation to
crash. Finally, a more generalized challenge is that a loss of
effectiveness may often lead to a constant steady state error,
that is undesirable in the system. To combat this, generally
some sort of integral term may be needed to drive the steady
state error to 0. However, with this comes two challenges. The
first being a way to prevent integral windup, which could drive
us unstable. This provides an extra set of tuning parameters.
The second is that the integral terms generally expand the state
spaces, which caused problems when attempting to expand the
MRAC and NN based controllers for the integral term. While
we were able to add the integral term in LQR and SMC, the
MRAC and NN based adaptive controllers need more careful
consideration due to having to solve the Lyapunov eqauation.

E. Next Steps

Our next steps include adding the integral term to LQR for
the lateral dynamics, as we saw a similar response with an
offset in states in the lateral dynamics that were fixed in the
longitudinal dynamics by implementing the integral term for
LQR gains. We also want to incorporate the integral terms to
the neural network and MRAC controllers, as we had good
results when adding the integral term to the Sliding Mode
Controller. Finally, we want to put our controller in a higher
fidelity simulation (like FlightGear) and see if the results carry
over from our dynamics model to a real simulation, with
uncertainty from dynamic noise (such as wind gusts) and
sensor uncertainty. While the focus of this was stabilization
around a trim state, switching between trims (such as climb
into steady level flight) could also change the conclusions as
to which adaptive element may be best. Adding knowledge



of control bounds and state bounds may also allow for safer
adaptation, which is the ultimate prioirty in these systems.

F. Conclusion

Overall, throughout this semester, we have implemented
7 controller algorithms and compared their performances on
a highly non-linear F-16 Model that underwent significant
disturbances to it’s elevator control. We compared their
performances and concluded that the Sliding Mode Controller
with Integral Action performed best, but we believe that
MRAC and the Neural Network Adaptive Controllers could
perform aswell if not better, when we integrate the integral
action into those controllers. Generally, all of the controllers
were able to adapt to the loss of effectiveness, even with
90% loss by commanding larger deflections, without any
knowledge of the loss. This shows promise for keeping the
F-16 flying despite critical loss of effectiveness that may
otherwise be catastrophic, but much more testing would be
needed for real-world implementation.

REFERENCES

[1] Dynamical Equations for Flight Vehicles. (n.d.).
https://courses.cit.cornell.edu/mae5070/DynamicEquations.pdf

[2] Intelligent Systems Research Lab, Julia F-16 Model.
https://github.com/isrlab/F16Model.jl

[3] Z. T. Dydek, A. M. Annaswamy and E. Lavretsky, ”Adaptive
Control and the NASA X-15-3 Flight Revisited,” in IEEE Con-
trol Systems Magazine, vol. 30, no. 3, pp. 32-48, June 2010, doi:
10.1109/MCS.2010.936292.

[4] Riccardo Marino, Adaptive control of nonlinear systems: Ba-
sic results and applications, Annual Reviews in Control, 1997,
https://doi.org/10.1016/S1367-5788(97)00033-3.

[5] Anderson, Brian D. O. and Bitmead, Robert R. and Johnson, C. Richard
and Kokotovic, Petar V. and Kosut, Robert L. and Mareels, Iven M.Y.
and Praly, Laurent and Riedle, Bradley D., Stability of adaptive systems:
passivity and averaging analysis, 1986, MIT Press, Cambridge, MA,
USA

[6] Anran Li, John P. Swensen, Mehdi Hosseinzadeh, Provably-
stable neural network based control of nonlinear systems,
Engineering Applications of Artificial Intelligence, 2024,
https://doi.org/10.1016/j.engappai.2024.109252.

[7] Jun Wang, Shaoping Wang, Xingjian Wang, Cun Shi, Mileta M. To-
movic, Active fault tolerant control for vertical tail damaged aircraft with
dissimilar redundant actuation system, Chinese Journal of Aeronautics,
2016, https://doi.org/10.1016/j.cja.2016.08.009.

[8] Zhao M, Wang D, Li M, Gao N, Qiao J. A new Q-function struc-
ture for model-free adaptive optimal tracking control with asymmetric
constrained inputs. Int J Adapt Control Signal Process. 2024; 38(5):
1561-1578. doi: 10.1002/acs.3761

[9] Riley Richards, Juan Paredes and Dennis Bernstein. ”Predictive Cost
Adaptive Control of Fixed-Wing Aircraft Without Prior Modeling,”
AIAA 2025-2081. AIAA SCITECH 2025 Forum. January 2025

[10] Z. Han, Y. Zhou, Y. Jiang, K. Bao and W. Yue, ”Distributed
Adaptive Consensus Control for Nonlinear Network Systems With
Event-Based Switching Mechanism Against Malicious Attacks,” in
IEEE Transactions on Automation Science and Engineering, doi:
10.1109/TASE.2024.3484512.

[11] General Block Diagram of MRAC. — Download Scientific
Diagram, www.researchgate.net/figure/General-block-diagram-of-
MRACfig3331459937. Accessed 22 Apr. 2025.

[12] Robust and Adaptive Control with Aerospace Applications. Springer
London, 2013.

[13] Shin, Yoonghyun. Neural Network Based Adaptive Control for Nonlin-
ear Dynamic Regimes. 2005.

[14] MATLAB. “What Is Sliding Mode Control?” YouTube, 26 Sept. 2024,
www.youtube.com/watch?v=RD-2oiwEbDo. Accessed 11 Dec. 2024.

[15] Vetter, Travis. Sliding-Mode Control Applied for Robust Control of a
Highly Unstable Aircraft BY.


